

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 689817

Innovative bio-based on-site Sanitation for Water and Resource Savings

Nicolas SALMON – YES Innovation + Grace Yepez Arquitectura Maria Augusta Hermida – Universidad de Cuenca Stefan Reuter, BORDA

Once upon a time...

NOBATEK headquarters Anglet, France June 2016



Wastewater treatment

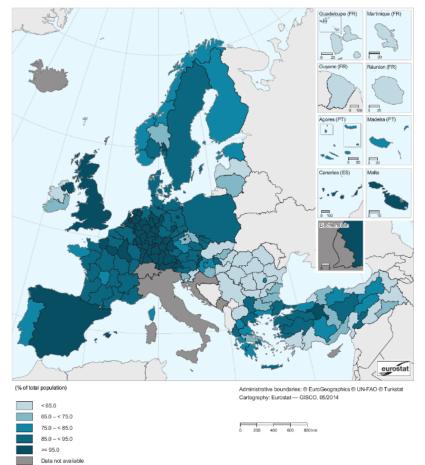
two strategies

Collective sanitation

INNOQUA: context

In the world

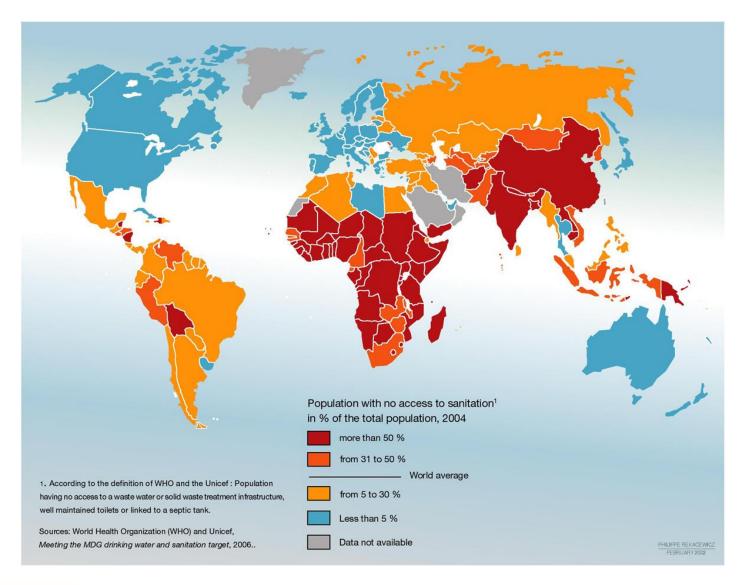
2.5 billion people


do not have access to adequate sanitation **1000 children** under 5 **die each day** because of water and hygiene related diseases

INNOQUA: context

Population connected to urban wastewater collection system, by NUTS 2 regions, 2011 (1) (% of total population)

(¹) Note the definition of the indicator may vary between countries. Denmark, Germany, Spain, the Netherlands, Austria, Sweder, the United Kingdorn and Turkey. 2010. Belgum, Greece, Latvia, Portugal and the former Yugoslav Republic of Macedonia: 2009. France: 2008. Belgium, Denmark, Spain, Poland, Portugal, Slovakia, Finland, Sweder, the United Kingdorn and Serbis: national level.


Source: Eurostat (online data code: env_wwcon_r2 and env_ww_con)

In Europe, still a lot to be done: Eastern countries, Ireland, specific areas (mountain, coast), agriculture...

INNOQUA: context

In Latin America: very low level of water treatment

INNOQUA innovation for wastewater treatment

INNOQUA: OBJECTIVE 1

- To integrate individual, low cost, sustainable and biologically-based water sanitation technologies
- Capable of performing a whole water treatment cycle
- Available in multiple modular configurations adapted to local contexts and markets.

4 initial technologies + TICs:

Daphniafilter

Bio Solar Purification

BORDA

UV Disinfection

INNOQUA: Technologies 1. Lumbrifilter

Eisenia andrei

INNOQUA: Technologies 1. Lumbrifilter

Eisenia fetida + Eisenia andrei + microorganisms (aerobic bacteria)

Specific substrate

+

INNOQUA: Technologies 1. Lumbrifilter

> Existing plants in France, Chile, China, New Zealand, Italia, Bolivia,...

> Performance*:

	Lumbrifilter			
	DCO	51,2 (83%)		
	DBO5	7 (94,5%)		
	MES	12,8 (74%)		
	N kjeldhal	5-12 (93-97%)		
	N total	50 (50%)		
	P total	6,2 (30/35%)		
	Turbidity	87%		

> Cost* :

INNOQUA
innovation for wastewater treatment

	Lumbrifilter	Activated sludge	Lagoon	Bacterial bed
Investment	76 225	227 150	116 623	177 603
Workforce	4 957	8 597	4 487	6 422
Energy consumption	804	2 721	0	485
Exploitation	5 761	11 318	4 487	6 907

* Data based on Combaillaux (France) 15 years explotation

INNOQUA: Technologies

2. Daphniafilter

Daphnia

INNOQUA: Technologies 2. Daphniafilter

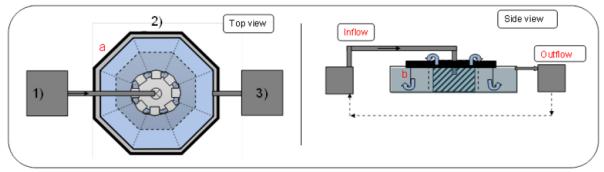


Figure 20 - Scheme of the both views: a) top and b) side of Daphniafilter system. 1) Collecting chamber, 2) main daphnia filter unit and 3) collecting tank.

INNOQUA: Technologies

BORDA DE CUENCA CONSTRUCTION OF CONSTRUCTURE O

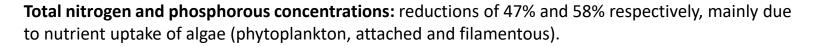
2. Daphniafilter

15 years of research, multiples pilot sites in The Netherlands and in Spain

PERFORMANCE

Table 7 - Comparison of the inactivation rates of different water reclamation treatments on the Costa Brava (data from the Costa Brava water agency (<u>http://www.ccbgi.org/reutilitzacio.php</u>, March 2013); *[13]).

Water Reclamation Plant	Treatment (after secondary level)		Inactivation rates, ulog E.coli SRC Somatic coliphages		
El Port de la Selva	Coagulation, flocculation, multi-layer pressure filtration, UV+Chlorination	3.5	2.9	3.5	
Empuriabrava	Constructed wetland system	2.2	1.1	-	
Torroella de Montgri	UV+Chlorination	2.1	1.1	-	
Pals	Chlorination	3.3	1.0	-	
Castell-Platja d'Aro	Sand filtration, UV+Chlorination	4.5	1.3	-	
Tossa de Mar	Coagulation, flocculation, sedimentation Sand filtration, UV+Chlorination	4.5	2.8	3.2	
Pilot plant biological filtration	4-day retention time in Daphnia mesocosmos	2.7	1.9	-	



INNOQUA: Technologies 2. Daphniafilter

15 years of research, multiples pilot sites in The Netherlands and in Spain

PERFORMANCE

BORD4

Suspended solids: 99% of small suspended particles eliminated.

Emerging and priority organic pollutants (i.e. pharmaceuticals, personal care products, pesticides, antiseptics, fire retardants and plasticizers) with an average removal efficiency of 80%

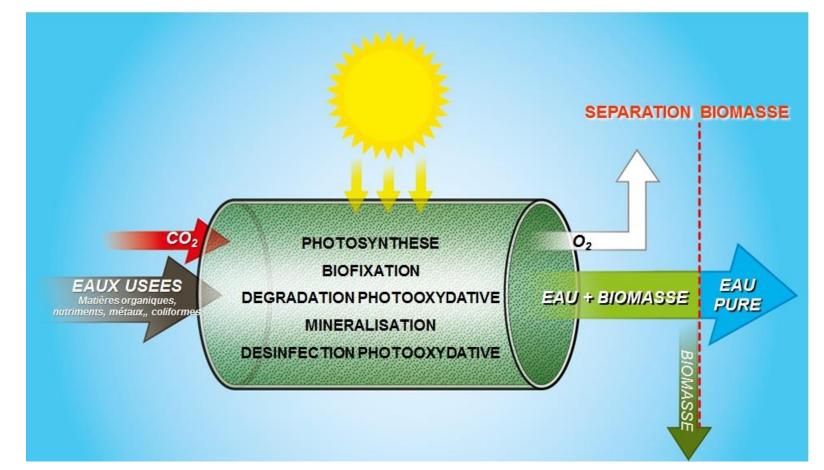
- more efficient than other conventional tertiary treatments, such as coagulation-flocculation-lamellar sedimentation and UV light-chlorination,
- but slightly lower than advanced oxidation treatments, such as ozonation, Fenton oxidation or membrane-based systems.
- High removal efficiency of the Daphnia reactor explained by the simultaneous occurrence in the biological filtration systems of biodegradation (e.g. ibuprofen, naproxen and furosemide), photodegradation (e.g. diclofenac and ketoprofen), sorption processes, algae and zooplankton uptake.

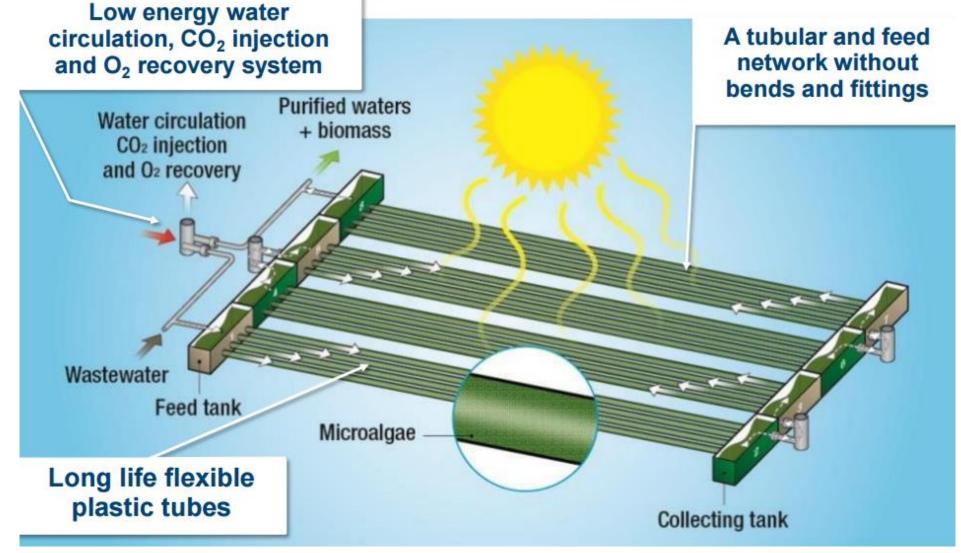
Entirely natural and does not require chemicals or frequent maintenance.

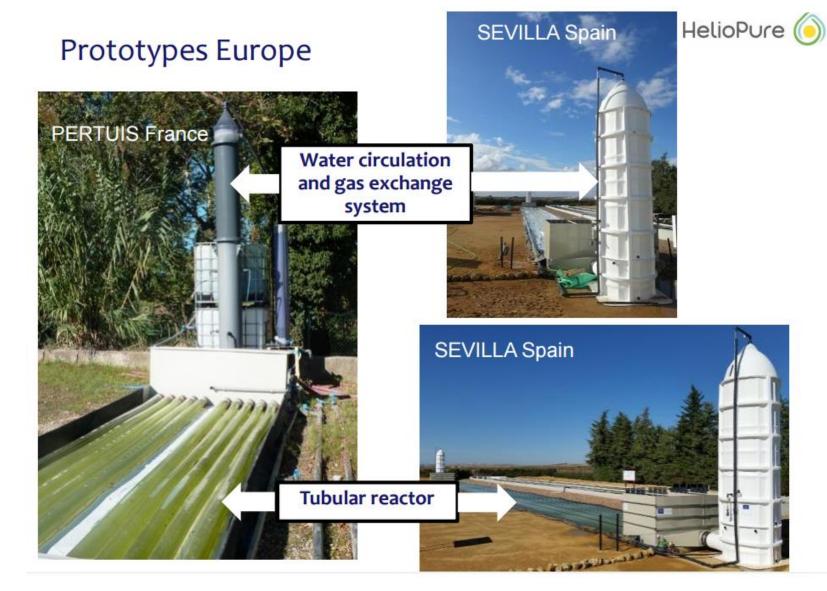
Capable of regulating themselves based on the available food and the physico-chemical environment giving high quality water.

Reduces the concentration of small particles in a similar amount to that found for disc filters without the need of any backwash

Does not require the use of chemicals to aggregate particles > reduced ecological impact and cost of treatment.


INDOQUA





INNOQUA: Technologies

3. Bio-solar purification

BORDA DE CUENCA CONSTRUCTION OF CONSTRUCTURE O

Cost:

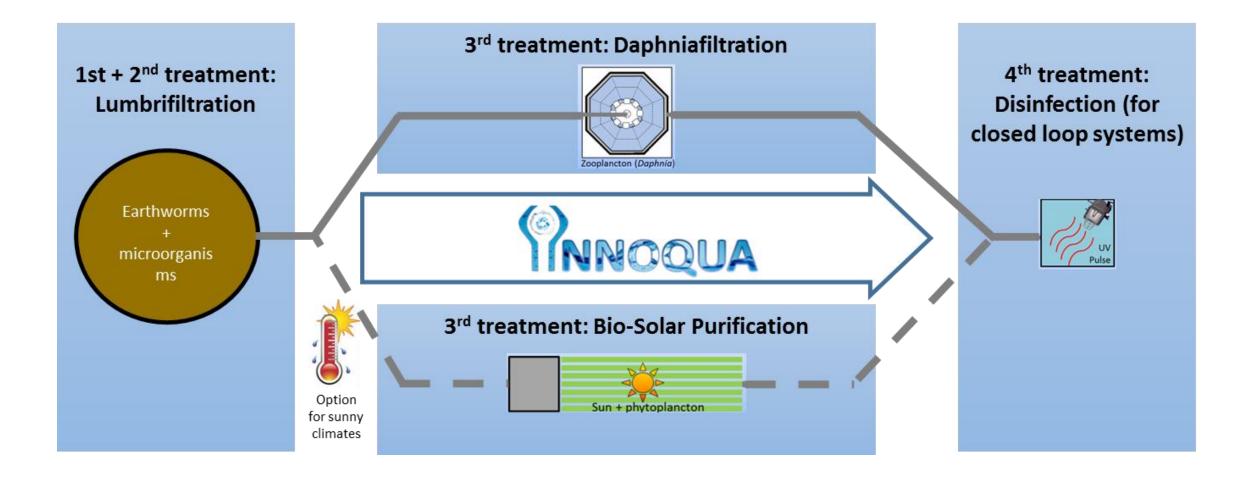
> Investment costs from 0.2 to 0.4 \$/m3 treated water based on 20 years depreciation
> Operating costs from 0.05 to 0.15 \$/m3 recovered water

Performance:


Type of	Substances	Type of	Treatment	Comment				
pollutants		treatment	performance		Parameters	Input	Output	Removal
Nutrients	CO2, NO3, NH4, PO4	Uptake	80 - 100%	Pilot testing		HelioPur unit	HelioPur unit	performance
Metals		Biofixation	60 - 90%		Escherichia Coli (Coliforms)	2,8E + 07	< 60	5,7 log (99,997%)
Metals	Toxic, rare, radioactive As, Cr, Cd, Cu, Mn,	Biolixation	60 - 90%	Lab results and publications on microalgae biofixation in	Fecal Enterococci	3,5E + 06	< 60	4,7 log
	Ni, Hg, Pb, U			open systems HRAP	Total Organic Carbon (mg/L)	210	7,8	96%
Pharmaceuticals	Diclofenac Sulfamethoxyazole	Photooxydative degradation	100% 60 - 100%	Lab results and publications	Biological Oxygen Demand 5 days (mg/L)	500	3	99%
				pusiiouuono	Chimical Oxygen Demand (mg/L)	1050	32	97%
Pesticides	Thiamethoxam	Photooxydative degradation	100%	Lab results and publications	Suspended Materials (mg/L)	450	17	96%
Organic	Bisphenol A		Lab results with selected	Total Phosphorous (mg P/L)	10,65	1,75	80%	
	degradation	microalgae strain	Total Kjeldhal Nitrogen (mg N/L)	73,44	23,35	68%		
Microorganisms	sms Coliforms and fecal Photooxydative 4 to 6 log Pilot testing	Pilot testing	Ammonia (mg N/L)	42,9	0,5	98%		
	enterococci	enterococci disinfection decrease						

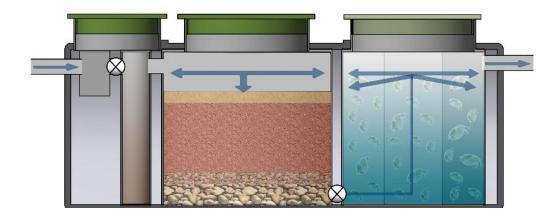
INNOQUA: Technologies 4. UV disinfection

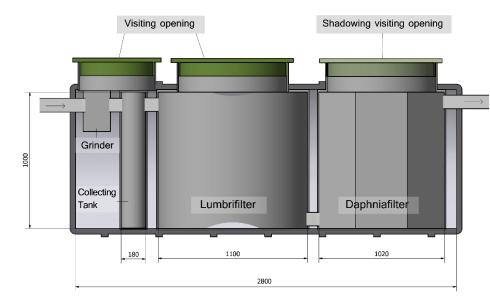
Medium pressure lamp

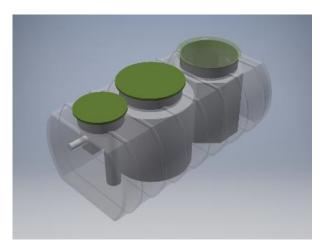


InLine range with medium pressure lamps

The INNOQUA System







The INNOQUA System

OBJECTIVES 2

 To demonstrate across 9 countries in 4 continents the long term viability of innovative, modular and sustainable solutions for wastewater treatment in real-environment

CAPTION

Non-controlled environment demonstration

"Showcase" demonstration

Some pilot sites

Office in Anglet, France

Aquaculture in Lozere, France

Island facility in the Highlands, Scotland

Residential area in Bangalore, India

Turistic housing in Sinop, Turkey

PILOT SITES: Latin America

Quito Casa Armero

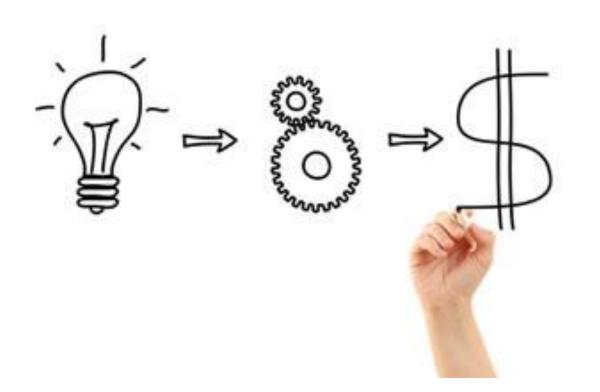
Cuenca Universidad de Cuenca

Arequipa Fundo Huasacache

OBJECTIVE 3

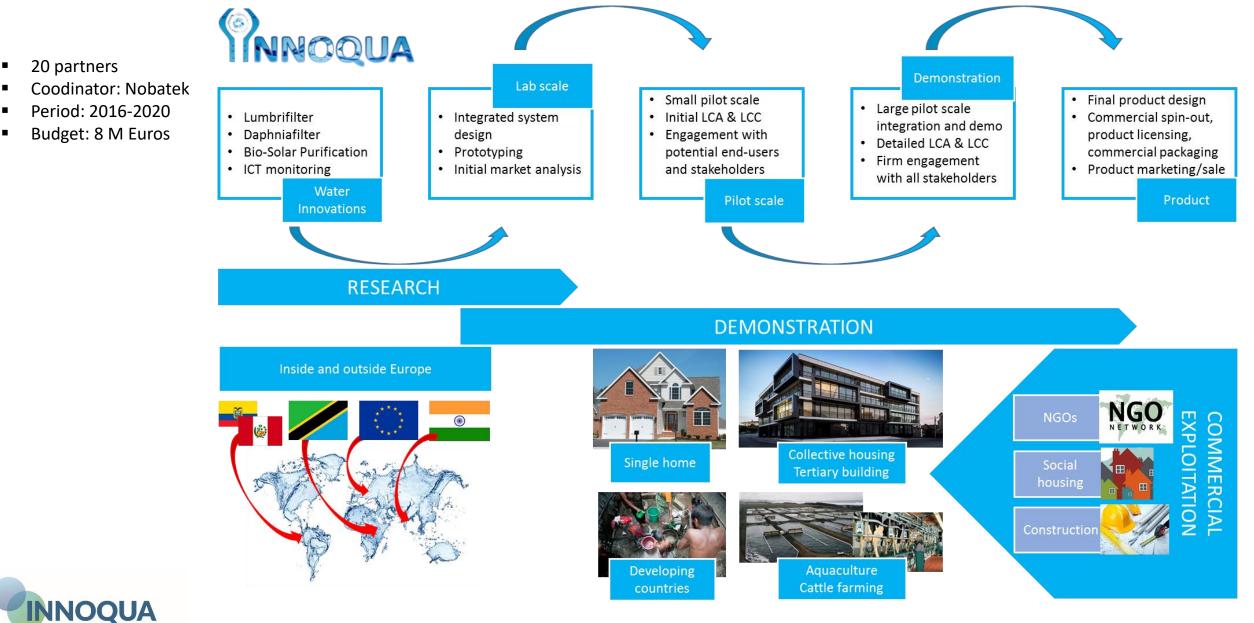
Optimization and sustainability

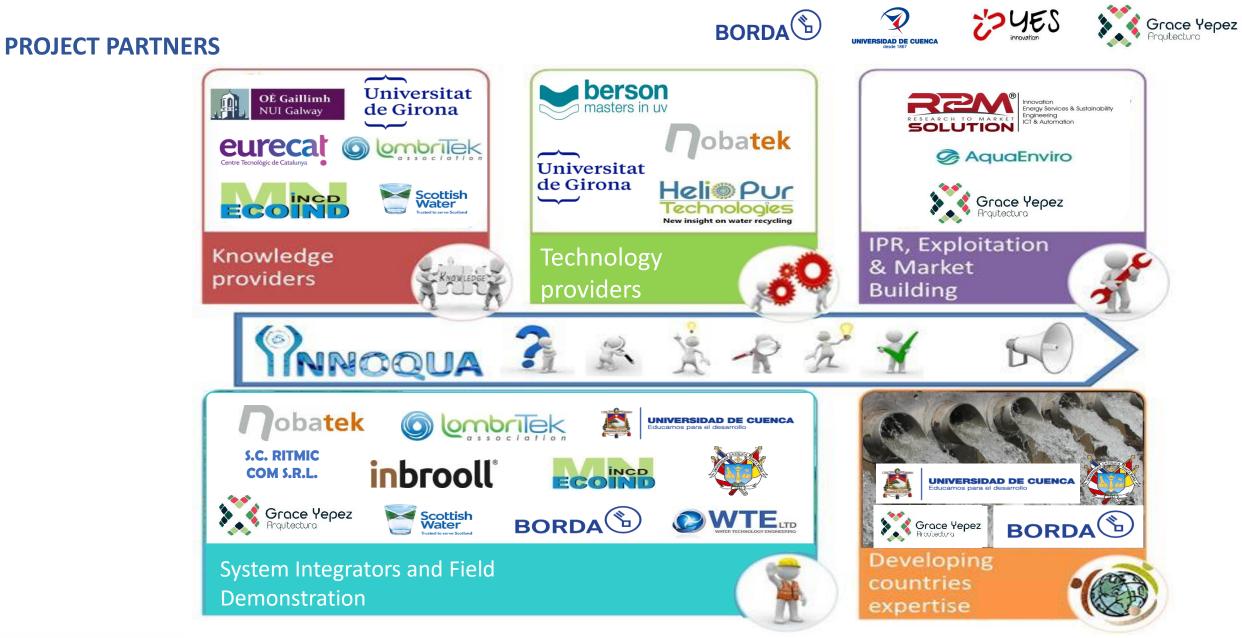
- Eco design + life cycle assessment
- Resource and energy efficiency
- Local sourcing and re-manufacturing process
- Life cycle cost



OBJECTIVE 4

- To support the commercialization of the proposed solutions in order to encompass precommercialization challenges of innovative water solutions
- To start stimulating economic growth, business and job creation in the water sector both inside and outside Europe.





PROJECT DEVELOPMENT

innovation for wastewater treatment

www.innoqua.eu

Stefan REUTER reuter@borda.de UNIVERSIDAD DE CUENCA desde 1867

Dr. Arq. Maria Augusta HERMIDA

augusta.hermida@ucuenca.edu.ec

SUBJES innovation

Dr. Ing. Nicolas SALMON nsalmon@yes-innovation.com Tel: 0986054601

YES Innovation / GRACE YEPEZ ARQUITECTURA www.yes-innovation.com